

Personalizing hemodialysis (HD) treatment in pediatric patients with end-stage renal disease (ESRD) – application and integration of quantitative pharmacology with machine learning

Verena Gotta^{1*}, Georgi Tancev^{2*}, Julia E. Vogt^{3°}, Olivera Marsenic⁴, Marc Pfister^{1°}

¹Pediatric Pharmacology and Pharmacometrics, University of Basel Children's Hospital, Basel Switzerland
 ²Department of Mathematics and Computer Science, University of Basel, Basel, Switzerland
 ³Department of Computer Science, ETH Zurich, Zurich, Switzerland
 ⁴Pediatric Nephrology, Stanford University School of Medicine, Lucile Packard Children's Hospital, Stanford, CA

PAGE Meeting, Sep 6, 2021 Clinical Applications – Integrating Machine Learning and Quantitative Pharmacology

Pediatric Endstage Renal Disease (ESRD)

- Mortality \geq 30x \uparrow compared to healthy children
- Rare condition

Hemodialysis (HD)

=Mode of initial renal replacement therapy in ~ 50% of patients

Hemodialysis (HD)

=Mode of initial renal replacement therapy in ~ 50% of patients

< 10-12 ml/kg/h (Ultrafiltration, UFR)

Adult targets:

- Urea dialyzer clearance (K_D): Weight-normalized Kt/V \ge 1.4
- Fluid removal rate:

Urea dialyzer clearance K_D

mechanistic prediction (mass balance) - needs in vivo correction

 $\mathbf{K}_{\mathbf{D}} = f(\mathbf{Q}_{D}, \mathbf{Q}_{B}, \mathbf{KoA}_{in \ vitro})^{1}$

HD corrects only part of ESRD problems...

Other disease-related problems require additional intervention strategies

- Uremia
- Fluid overload

- Anemia
- Cardiovascular disease
- Hypertension
- Mineral and bone disorder
- Malnutrition

Data used for retrospective analysis

Cohort of 1852 patients

✓ on chronic HD since childhood (<19 years)

✓ HD 3x/week

✓ <30 years (2004-2016)

Methods

Methods

 Covariate analysis: factors associated with *in vivo* correction factor f_c

- Weibull accelarated failure time (AFT) model
- mean Kt/V versus Kt/BSA as predictors of log hazard

Methods

 Covariate analysis: factors associated with *in vivo* correction factor f_c

- Weibull accelarated failure time (AFT) model
- mean Kt/V versus Kt/BSA as predictors of log hazard

Results Included data

PMX modeling of K_D Base model: C_{post-HD} underpredicted in children <6 years

PMX modeling of K_D **Covariate model**: accounting for high Q_D/Q_B corrects bias in children <6 years

Pediatric prescription

PMX modeling of K_D Covariate model: other factors for personalized in vivo HD clearance prediction

Typical adult prescription

- ✓ Q_D/Q_B ratio
- ✓ Type of filter (low-/high-flux)
- ✓ Predicted true Q_B (lower than nominal Q_B > 200 mL/min)

Pediatric prescription

PMX modeling of K_D **Covariate model**: other factors for personalized in vivo HD clearance prediction

Typical adult prescription

- ✓ Q_D/Q_B ratio
- ✓ Type of filter (low-/high-flux)
- ✓ Predicted true Q_B (lower than nominal Q_B > 200 mL/min)

llood flow (Q ₈)	500 mL/min	100 mL/min
ialysate flow (Q ₀)	800 mL/min	500 mL/min
Iter mass-transfer-area coefficient for urea (KoA in vitro)	800 mL/min	300 mL/min
ow-flux filter use	0 1=yes, 0≖high-flux	0 1=yes, 0=high-flux
alculated values		
alculated in vitro urea dialyzer clearance (K _D) without correction*	274 mL/min	1* 44 ml/min
alculated true Q _n **	457 mL/min	100 ml /min
alculated Q ₀ /Q ₈ ratio	1.60	5.00
alculated KoA correction factor for ${\rm Q}_{\rm D}/{\rm Q}_{\rm B}$ ratio and filter flux	0.66	2.06
aclulated corrected in vivo urea dialyzer clerance (K ₀)***:	198 mL/min =72.1% of in vitro K	69 ml /min of in vitro M

✓ Ultrafiltration rate (K_{UFR}): adds as convective clearance to diffusive K_D

 $CL_{tot} = CL_R + K_D + K_{UFR}$

Parametric TTE modeling Weibull model predicts baseline hazard well

- --- Weibull model predictions (unadjusted)
 - Scale σ = 35.4 years
 (time when predicted survival = 40%)
 - Shape $\alpha = 1.23$ (indicating with $\alpha > 1$ increasing hazard of death over time)

_ Kaplan Meier curve (95% CI)

Parametric TTE modeling

BSA-based HD dose (Kt/BSA) better predictor of survival than weight-based Kt/V

- - - Weibull model prediction (log-linear relationship with log hazard)

____ prediction from flexible non-linear spline model

Parametric TTE modeling

BSA-based HD dose (Kt/BSA) better predictor of survival than weight-based Kt/V

Parametric TTE modeling

Ultrafiltration (UFR) associated with survival in U-shaped relationship

- - - Weibull model prediction (quadratic relationship with log hazard)

____ prediction from flexible non-linear spline model

Machine learning (Random forest)

12 predictors related to nutrition, inflammation, anemia and HD dose (Kt/V, UFR)

- Demographics
- HD treatment
- Laboratory measurements (monthly)

Final ML model: n=12 features retained

Machine learning (Random forest) Partial dependence plots: Increased mortality with low Kt/V < 1.5

Machine learning (Random forest)

Partial dependence plots: Increased mortality with low UFR < 10 mL/kg/h

Conclusion: Quantitative pharmacology and ML approaches can help to personalize HD treatment in children

Conclusion: Quantitative pharmacology and ML approaches can help to personalize HD treatment in children

PMX: Scaling/predicting urea dialyzer clearance (K_D) from adult to pediatric HD patients

TTE/ML: Intense HD prescription in children needed for best long-term survival

Conclusion: Quantitative pharmacology and ML approaches can help to personalize HD treatment in children

PMX: Scaling/predicting urea dialyzer clearance (K_D) from adult to pediatric HD patients

TTE/ML: Intense HD prescription in children needed for best long-term survival

- Kt/BSA > Kt/V (alternatively: agedependent Kt/V)
- UFR: U-shaped relationship (increased mortality <10 and >18 mL/kg/h)

 Importance of other disease-related factors besides HD dose (Kt/V) / UFR

Thank you for your attention!

Prof. Marc Pfister

Dr. Andrew Atkinson

Prof. Olivera Marsenic Coloures

Stanford Children's Children's Health

Lucile Packard Children's Hospital Stanford

BB

Universitäts-Kinderspital

beider Basel

Prof. Julia Vogt

ETH zürich

Georgi Tancev

Universität Basel

Contact: verena.gotta@ukbb.ch

